Compare with transient expression, stable cell lines generally have higher productivity and better quality for protein expression. However, selection of stable cell line is time-consuming and laborious. Here we describe an optimized selection method to achieve high-efficient stable cell pools with Expi293F suspension cells. This method only takes 2-3 weeks to generate stable cell pools with 2- to 10-fold higher productivity than transient gene expression (TGE). In fed-batch culture with Yeastolate, >1 g/L yield was achieved with our KTN0239-IgG stable cell pool in shaker flasks. This method can be also applied to efficiently display proteins on the cell surface.
Compare with transient expression, stable cell lines generally have higher productivity and better quality for protein expression. However, selection of stable cell line is time-consuming and laborious. Here we describe an optimized selection method to achieve high-efficient stable cell pools with Expi293F suspension cells. This method only takes 2-3 weeks to generate stable cell pools with 2- to 10-fold higher productivity than transient gene expression (TGE). In fed-batch culture with Yeastolate, >1 g/L yield was achieved with our KTN0239-IgG stable cell pool in shaker flasks. This method can be also applied to efficiently display proteins on the cell surface.