Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq) is a single-cell phenotyping method that uses antibody-derived tags (ADTs) to quantitatively detect cell surface protein expression and generate transcriptomic data at the single-cell level. Despite the increased popularity of this technique to study cellular heterogeneity and dynamics, detailed methods on how to choose ADT markers and ensuring reagent performance in biological relevant systems prior to sequencing is not available. Here we describe a novel and easy-to-use multiplex flow proxy assay in which multiple protein markers can be measured simultaneously using a combination of ADT reagents and dye-oligo conjugates by flow cytometr... More
Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq) is a single-cell phenotyping method that uses antibody-derived tags (ADTs) to quantitatively detect cell surface protein expression and generate transcriptomic data at the single-cell level. Despite the increased popularity of this technique to study cellular heterogeneity and dynamics, detailed methods on how to choose ADT markers and ensuring reagent performance in biological relevant systems prior to sequencing is not available. Here we describe a novel and easy-to-use multiplex flow proxy assay in which multiple protein markers can be measured simultaneously using a combination of ADT reagents and dye-oligo conjugates by flow cytometry. Using dye-oligo conjugates with sequences complementary to the ADT reagents, we can achieve specific binding and evaluate protein marker expression in a multiplex way. This quality control assay is useful for guiding ADT marker choice and confirming protein expression prior to sequencing. Importantly, the labeled cells can be directly isolated based on the specific fluorescence from dye-oligo conjugates using a flow cytometry cell sorter and processed for downstream single-cell multiomics. Using this streamlined workflow, we sorted natural killer cells and T cells efficiently using only ADT and dye-oligo reagents, avoiding the possibility of decreased marker resolution from co-staining cells with ADT and fluorescent antibodies. This novel workflow provides a viable option for improving ADT marker choice and cell sorting efficiency, allowing subsequent CITE-Seq.