The COVID-19 pandemic has exacerbated mortality rates among immunocompromised patients, accentuating the need for novel, targeted therapies. Transplant recipients, with their inherent immune vulnerabilities, represent a subgroup at significantly heightened risk. Current conventional therapies often demonstrate limited effectiveness in these patients, calling for innovative treatment approaches. In immunocompromised transplant recipients, several viral infections have been successfully treated by adoptive transfer of virus-specific T-cells (VST). This paper details the successful application of SARS-CoV-2-specific memory T-cell therapy, produced by an interferon-γ cytokine capture system (CliniMACS® Prodigy de... More
The COVID-19 pandemic has exacerbated mortality rates among immunocompromised patients, accentuating the need for novel, targeted therapies. Transplant recipients, with their inherent immune vulnerabilities, represent a subgroup at significantly heightened risk. Current conventional therapies often demonstrate limited effectiveness in these patients, calling for innovative treatment approaches. In immunocompromised transplant recipients, several viral infections have been successfully treated by adoptive transfer of virus-specific T-cells (VST). This paper details the successful application of SARS-CoV-2-specific memory T-cell therapy, produced by an interferon-γ cytokine capture system (CliniMACS® Prodigy device), in three stem cell transplant recipients diagnosed with COVID-19 (case 1: alpha variant, cases 2 and 3: delta variants). These patients exhibited persistent SARS-CoV-2 PCR positivity accompanied by bilateral pulmonary infiltrates and demonstrated only partial response to standard treatments. Remarkably, all three patients recovered and achieved viral clearance within 3 to 9 weeks post-VST treatment. Laboratory follow-up investigations identified an increase in SARS-CoV-2-specific T-cells in two of the cases. A robust anti-SARS-CoV-2 S (S1/S2) IgG serological response was also recorded, albeit with varying titers. The induction of memory T-cells within the CD4 + compartment was confirmed, and previously elevated interleukin-6 (IL-6) and IL-8 levels normalized post-VST therapy. The treatment was well tolerated with no observed adverse effects. While the need for specialized equipment and costs associated with VST therapy present potential challenges, the limited treatment options currently available for COVID-19 within the allogeneic stem cell transplant population, combined with the risk posed by emerging SARS-CoV-2 mutations, underscore the potential of VST therapy in future clinical practice. This therapeutic approach may be particularly beneficial for elderly patients with multiple comorbidities and weakened immune systems.