Galaxy银河|澳门官网·登录入口

至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

Systemic LPS Administration Stimulates the Activation of Non-Neuronal Cells in an Experimental Model of Spinal Muscular Atrophy

Cells. 2024-05; 
Eleni Karafoulidou, Evangelia Kesidou, Paschalis Theotokis, Chrystalla Konstantinou, Maria-Konstantina Nella, Iliana Michailidou, Olga Touloumi, Eleni Polyzoidou, Ilias Salamotas, Ofira Einstein, Athanasios Chatzisotiriou, Marina-Kleopatra Boziki, Nikolaos Grigoriadis
Products/Services Used Details Operation
Proteins, Expression, Isolation and Analysis … Membranes were then washed with PBST and visualized with enhanced chemiluminescence solution (ECL, L00221, Lumisensor Genscript, Piscataway, NJ, USA). In order to reliably … Get A Quote

摘要

Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by deficiency of the survival motor neuron (SMN) protein. Although SMA is a genetic disease, environmental factors contribute to disease progression. Common pathogen components such as lipopolysaccharides (LPS) are considered significant contributors to inflammation and have been associated with muscle atrophy, which is considered a hallmark of SMA. In this study, we used the SMNΔ7 experimental mouse model of SMA to scrutinize the effect of systemic LPS administration, a strong pro-inflammatory stimulus, on disease outcome. Systemic LPS administration promoted a reduction in SMN expression levels in CNS, peripheral lymphoid organs, and skeleta... More

关键词

SMNΔ7, astrocytes, gut–brain axis, gut–skeletal muscle axis, microglia, spinal muscular atrophy
XML 地图