Galaxy银河|澳门官网·登录入口

至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

Cytochrome b5 diversity in green lineages preceded the evolution of syringyl lignin biosynthesis

Plant Cell. 2024-07; 
Xianhai Zhao, Yunjun Zhao, Qing-Yin Zeng, Chang-Jun Liu
Products/Services Used Details Operation
Gene Synthesis … In this study, we uncovered, through in planta genetic exploration and heterologous whole-… CbCB5 genes from green algae, and the hornwort AaCB5 gene was synthesized (GenScript) … Get A Quote

摘要

Lignin production marked a milestone in vascular plant evolution, and the emergence of syringyl (S) lignin is lineage specific. S-lignin biosynthesis in angiosperms, mediated by ferulate 5-hydroxylase (F5H, CYP84A1), has been considered a recent evolutionary event. F5H uniquely requires the cytochrome b5 protein CB5D as an obligatory redox partner for catalysis. However, it remains unclear how CB5D functionality originated and whether it coevolved with F5H. We reveal here the ancient evolution of CB5D-type function supporting F5H-catalyzed S-lignin biosynthesis. CB5D emerged in charophyte algae, the closest relatives of land plants, and is conserved and proliferated in embryophytes, especially in angiosperms, s... More

关键词

XML 地图