Among the eight phytochemicals (dihydrocarveol, sinapic acid, vanillic acid, ethylgallate, myrtenol, transcarveol, p-methoxycinnamic acid, and isoferulic acid) we tested, p-methoxycinnamic acid (p-MCA) [10μM] showed the most potent in vitro growth inhibition on human colon adenocarcinoma (HCT-116 cells). Antiproliferative activity of p-MCA at 24h was associated with DNA damage, morphological changes and the results were comparable with doxorubicin. p-MCA induced phosphatidylserine translocation, increased the levels of reactive oxygen species (ROS), thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC) and decreased enzymic antioxidant status (SOD, CAT, GPx) in HCT-116. p-MCA treatm... More
Among the eight phytochemicals (dihydrocarveol, sinapic acid, vanillic acid, ethylgallate, myrtenol, transcarveol, p-methoxycinnamic acid, and isoferulic acid) we tested, p-methoxycinnamic acid (p-MCA) [10μM] showed the most potent in vitro growth inhibition on human colon adenocarcinoma (HCT-116 cells). Antiproliferative activity of p-MCA at 24h was associated with DNA damage, morphological changes and the results were comparable with doxorubicin. p-MCA induced phosphatidylserine translocation, increased the levels of reactive oxygen species (ROS), thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC) and decreased enzymic antioxidant status (SOD, CAT, GPx) in HCT-116. p-MCA treatment increased the percentage of apoptotic cells, decreased the mitochondrial membrane potential and triggered cytochrome C release to cytosol. The induction of apoptosis by p-MCA was accompanied by an increase in caspase 3 and caspase 9 activities, increased expression of Bax and decreased expression of Bcl-2. Thus p-MCA induces mitochondria mediated intrinsic pathway of apoptosis in HCT-116 and has potential for treatment and prevention of colon cancer.