Pro-inflammatory cytokines produce manifestations of sickness during inflammation, such as malaise and lethargy. They also contribute to effects of inflammation on mood. Anti-inflammatory cytokines counteract damage caused by inflammatory processes and can limit the severity of inflammation. However, very little is known about the role of anti-inflammatory cytokines in sickness and mood changes during immune activation. The purpose of this study was to determine if a prototypical anti-inflammatory cytokine, interleukin 10 (IL-10), can offset sickness behavior and anxiety caused by a pro-inflammatory cytokine, and whether IL-10 itself modifies anxiety. Rodent models of sickness display suppression of b... More
Pro-inflammatory cytokines produce manifestations of sickness during inflammation, such as malaise and lethargy. They also contribute to effects of inflammation on mood. Anti-inflammatory cytokines counteract damage caused by inflammatory processes and can limit the severity of inflammation. However, very little is known about the role of anti-inflammatory cytokines in sickness and mood changes during immune activation. The purpose of this study was to determine if a prototypical anti-inflammatory cytokine, interleukin 10 (IL-10), can offset sickness behavior and anxiety caused by a pro-inflammatory cytokine, and whether IL-10 itself modifies anxiety. Rodent models of sickness display suppression of behavioral activity that may reflect lethargy or malaise, while models of anxiety display reduced exploration in several tasks. The effects of peripheral single dose of cytokines on open field exploration, social interaction and elevated plus maze (EPM) tests in adult male Sprague-Dawley rats were measured at 30-50?min post-treatment. The prototypical pro-inflammatory cytokine IL-1β (1?μg, i.p.) caused a decrease in locomotor activity indicative of sickness behavior, but disproportionately reduced central area exploration in the open field, open arm exploration in the EPM and lowered social interaction. IL-10 (1?μg, i.p.) had no effect on locomotor activity, but itself produced anxiety-like behavior in the open field and EPM. However, rats co-treated with both IL-10 and IL-1β showed locomotor activity, open field, social interaction and EPM behaviors very similar to control groups. This data demonstrate that IL-10 is capable of mitigating the sickness and anxiogenic effects caused by IL-1β, but that immune imbalance toward either a pro-inflammatory or an anti-inflammatory state can produce anxiety. This has importance for understanding the scope of immune changes that produce psychiatric symptoms, and provides preliminary indication that anti-inflammatory cytokines may be potentially useful in treatment of anxiety induced by inflammatory conditions.