Blood levels of Glial Fibrillary Acidic protein (GFAP) reflect processes associated with different types of CNS injury. Evidence suggests that GFAP is cleaved by caspases during CNS injury, hence positioning GFAP fragments as potential biomarkers of injury-associated processes. We set out to develop an assay detecting the neo-epitope generated by caspase-6 cleavage of GFAP (GFAP-C6), and to assess the ability of GFAP-C6 to reflect pathological processes in patients suffering a cardiac arrest and subsequent global cerebral ischemia. Anti-GFAP-C6 antibodies recognized their specific target sequence, and dilution and spike recoveries in serum were within limits of ±20% reflecting high precision and accuracy of me... More
Blood levels of Glial Fibrillary Acidic protein (GFAP) reflect processes associated with different types of CNS injury. Evidence suggests that GFAP is cleaved by caspases during CNS injury, hence positioning GFAP fragments as potential biomarkers of injury-associated processes. We set out to develop an assay detecting the neo-epitope generated by caspase-6 cleavage of GFAP (GFAP-C6), and to assess the ability of GFAP-C6 to reflect pathological processes in patients suffering a cardiac arrest and subsequent global cerebral ischemia. Anti-GFAP-C6 antibodies recognized their specific target sequence, and dilution and spike recoveries in serum were within limits of ±20% reflecting high precision and accuracy of measurements. Intra- and inter-assay CVs were below limits of 10% and 15%, respectively. Serological levels of GFAP-C6 were significantly elevated 72 hours after CA (Mean±SD) (20.39±10.59 ng/mL) compared to time of admission (17.79±10.77 ng/mL, p<0.0001), 24 hours (17.40±7.99 ng/mL, p<0.0001) and 48 hours (17.87±8.56 ng/mL, p<0.0001) after CA, but were not related to neurological outcome at day 180. GFAP-C6 levels at admission, 24, 48, and 72 hours after cardiac arrest correlated with two proteolytic fragments of tau, tau-A (r = 0.30, r = 0.40, r = 0.50, r = 0.53, p < 0.0001) and tau-C (r = 54, r = 0.48, r = 0.55, r = 0.54, p < 0.0001), respectively. GFAP-C6 levels did not correlate with other markers of CNS damage; total tau, NSE and S100B. In conclusion, we developed the first assay detecting a caspase-6 cleaved fragment of GFAP in blood. Increased levels at 72 hours after cardiac arrest as well as moderate correlations between GFAP-C6 and two other blood biomarkers of neurodegeneration suggest the ability of GFAP-C6 to reflect pathological processes of the injured brain. Investigations into the potential of GFAP-C6 in other types of CNS injury are warranted.