Structure heterogeneity and host nucleic acids contamination are two major problems for virus-like particles (VLPs) produced by various host cells. In this study, an in vitro optimized disassembly-purification-reassembly process was developed to obtain uniform and nucleic acid free hepatitis B core (HBc) based VLPs from E. coli fermentation. The process started with ammonium sulfate precipitation of all heterogeneous HBc structures after cell disintegration. Then, dissolution and disassembly of pellets into basic subunits were carried out under the optimized disassembly condition. All contaminants, including host nucleic acids and proteins, were efficiently removed with affinity chromatography. The purified sub... More
Structure heterogeneity and host nucleic acids contamination are two major problems for virus-like particles (VLPs) produced by various host cells. In this study, an in vitro optimized disassembly-purification-reassembly process was developed to obtain uniform and nucleic acid free hepatitis B core (HBc) based VLPs from E. coli fermentation. The process started with ammonium sulfate precipitation of all heterogeneous HBc structures after cell disintegration. Then, dissolution and disassembly of pellets into basic subunits were carried out under the optimized disassembly condition. All contaminants, including host nucleic acids and proteins, were efficiently removed with affinity chromatography. The purified subunits reassembled into VLPs by final removal of the chaotropic agent. Two uniform and nucleic acid free HBc-based VLPs, truncated HBc and chimeric HBc-MAGE3 I, were successfully prepared. It was found that disassembly degree of HBc-based VLPs had a great influence on the protein yield, nucleic acid removal and reassembly efficiency. 4 M urea was optimal because lower concentration would not disassemble the particles completely while higher concentration would further denature the subunits into disordered aggregate and could not be purified and reassembled efficiently. For removal of strong binding nucleic acids such as in the case of HBc-MAGE3 I, benzonase nuclease was added to the disassembly buffer before affinity purification. Through the optimized downstream process, uniform and nucleic acid free HBc VLPs and HBc-MAGE3 I VLPs were obtained with purities above 90% and yields of 55.2 and 43.0 mg/L, respectively. This study would be a reference for efficient preparation of other VLPs.