The intrinsically disordered proteins/regions (IDPs/IDPRs) are known to be responsible for multiple cellular processes and are associated with many chronic diseases. In viruses, the existence of disordered proteome is also proven and are related with its conformational dynamics inside the host. The SARS-CoV-2 virus has a large proteome, in which, structure and functions of many proteins are not known as of yet. Previously, we have investigated the dark proteome of SARS-CoV-2. However, the disorder status of non-structural protein 11 (nsp11) was not possible because of very small in size, just 13 amino acid long, and for most of the IDP predictors, the protein size should be at least 30 amino acid long. Also, th... More
The intrinsically disordered proteins/regions (IDPs/IDPRs) are known to be responsible for multiple cellular processes and are associated with many chronic diseases. In viruses, the existence of disordered proteome is also proven and are related with its conformational dynamics inside the host. The SARS-CoV-2 virus has a large proteome, in which, structure and functions of many proteins are not known as of yet. Previously, we have investigated the dark proteome of SARS-CoV-2. However, the disorder status of non-structural protein 11 (nsp11) was not possible because of very small in size, just 13 amino acid long, and for most of the IDP predictors, the protein size should be at least 30 amino acid long. Also, the structural dynamics and function status of nsp11 was not known. Hence, we have performed extensive experimentation on nsp11. Our results, based on the Circular dichroism spectroscopy gives characteristic disordered spectrum for IDPs. Further, we investigated the conformational behaviour of nsp11 in the presence of membrane mimetic environment, alpha helix inducer, and natural osmolyte. In the presence of negatively charged and neutral liposomes, nsp11 remains disordered. However, with SDS micelle, it adopted an α-helical conformation, suggesting the helical propensity of nsp11. At the end, we again confirmed the IDP behaviour of nsp11 using molecular dynamics simulations.