Lentiviral vectors (LVs) are widely used for delivering foreign genes for long-term expression. Recently, virus-like particles (VLPs) were developed for mRNA or ribonucleoprotein (RNP) delivery for short-term endonuclease expression. Generating large amount of LVs or VLPs is challenging. On the other hand, methods for using VLPs to co-deliver Cas9 mRNA and single guide RNA (sgRNA) are limited. Fusing aptamer-binding protein (ABP) to the N-terminus of HIV Gag protein is currently the successful way to develop hybrid particles for co-delivering Cas9 mRNA and sgRNA. The effects of modifying Gag protein this way on particle assembly are unknown. Previously we found that adding an ABP after the second zinc finger do... More
Lentiviral vectors (LVs) are widely used for delivering foreign genes for long-term expression. Recently, virus-like particles (VLPs) were developed for mRNA or ribonucleoprotein (RNP) delivery for short-term endonuclease expression. Generating large amount of LVs or VLPs is challenging. On the other hand, methods for using VLPs to co-deliver Cas9 mRNA and single guide RNA (sgRNA) are limited. Fusing aptamer-binding protein (ABP) to the N-terminus of HIV Gag protein is currently the successful way to develop hybrid particles for co-delivering Cas9 mRNA and sgRNA. The effects of modifying Gag protein this way on particle assembly are unknown. Previously we found that adding an ABP after the second zinc finger domain of nucleocapsid (NC) protein had minimal effects on particle assembly. Based on these observations, here we developed hybrid particles for Cas9 mRNA and sgRNA co-delivery with normal capsid assembly efficiency. We further improved LVs for integrated gene expression by including an aptamer sequence in lentiviral genomic RNA, which improved lentiviral particle production and enhanced LV genomic RNA packaging. In summary, here we describe the development of new all-in-one VLPs for co-delivery of Cas9 mRNA and sgRNA, and new LVs for enhanced vector production and gene expression.