Endothelial microparticles (EMPs) can be released in chronic kidney disease (CKD). Plasma concentration of high inorganic phosphate (HP) is considered as a decisive determinant of vascular calcification in CKD. We therefore explored the role of HP-induced EMPs (HP-EMPs) in the vascular calcification and its potential mechanism. We observed the shape of HP-EMPs captured by vascular smooth muscle cells (VSMCs) dynamically changed from rare dots, rosettes, to semicircle or circle. Our results demonstrated that HP-EMPs could directly promote VSMC calcification, or accelerate HP-induced calcification through signal transducers and activators of transcription 3 (STAT3)/bone morphogenetic protein-2 (BMP2) signaling pa... More
Endothelial microparticles (EMPs) can be released in chronic kidney disease (CKD). Plasma concentration of high inorganic phosphate (HP) is considered as a decisive determinant of vascular calcification in CKD. We therefore explored the role of HP-induced EMPs (HP-EMPs) in the vascular calcification and its potential mechanism. We observed the shape of HP-EMPs captured by vascular smooth muscle cells (VSMCs) dynamically changed from rare dots, rosettes, to semicircle or circle. Our results demonstrated that HP-EMPs could directly promote VSMC calcification, or accelerate HP-induced calcification through signal transducers and activators of transcription 3 (STAT3)/bone morphogenetic protein-2 (BMP2) signaling pathway. AEG-1 activity was increased through HP-EMPs-induced VSMC calcification, in arteries from uremic rats, or from uremic rats treated with HP-EMPs. AEG-1 deficiency blocked, whereas AEG-1 overexpression exacerbated, the calcium deposition of VSMCs. AEG-1, a target of miR-153-3p, could be suppressed by agomiR-153-3p. Notably, VSMC-specific enhance of miR-153-3p by tail vein injection of aptamer-agomiR-153-3p decreased calcium deposition in both uremia rats treated with HP-EMPs or not. HP-EMPs could directly induce VSMCs calcification and accelerate Pi-induced calcification, and AEG-1 may act as crucial regulator of HP-EMPs-induced vascular calcification. This study sheds light on the therapeutic agents that influence HP-EMPs production or AEG-1 activity, which may be of benefit to treat vascular calcification.