Leishmaniasis is caused by protozoan parasites belonging to 20 Leishmania species. This infectious disease is transmitted by bites of infected phlebotomine sandflies, and is widespread in 97 countries throughout the world. No preventive or effective vaccine has been developed yet. In this study, diverse computational methods were integrated to calculate evolutionary divergence, immunogenicity, IFN-γ production, epitope conservancy, and population coverage of protein fusion models of LeIF-SP15 namely SaLeish. Immunogenicity of LeIF of Leishmania species and SP15 of sandfly saliva has not been investigated in-silico in fusion form. A complete set of 9-mer MHC class I and 15-mer MHC class II peptides were identif... More
Leishmaniasis is caused by protozoan parasites belonging to 20 Leishmania species. This infectious disease is transmitted by bites of infected phlebotomine sandflies, and is widespread in 97 countries throughout the world. No preventive or effective vaccine has been developed yet. In this study, diverse computational methods were integrated to calculate evolutionary divergence, immunogenicity, IFN-γ production, epitope conservancy, and population coverage of protein fusion models of LeIF-SP15 namely SaLeish. Immunogenicity of LeIF of Leishmania species and SP15 of sandfly saliva has not been investigated in-silico in fusion form. A complete set of 9-mer MHC class I and 15-mer MHC class II peptides were identified with a high affinity for the antigenic epitopes of SaLeish inducing specific responses of CD8+ and CD4+ T cells from BALB/c and human. Our preferred approach was determining truncated fragment of SaLeish rather than a whole length bearing the capacity to trigger specific immune response. Phylogenetic analysis showed that LeIF protein is under balancing selection and is conserved between different Leishmania species. Selected SaLeish model contained 19 and 35 antigenic peptides for MHC class I and II, respectively, with strong binding affinity to both highly frequent HLA-I and HLA-II alleles. Analysis of class I CTL epitopes showed that promiscuous peptides of KSLKADIRK, MSCIPHCKY, LQAGVIVAV, and YQYYGFVAM have greater affinity to interact with HLA-A*01:01, HLA-A*02 (03, 06), HLA-A*30:02, HLA-B*40:01, and HLA-B*52:01 molecules. Population coverage with a range of 78-85% confirmed SaLeish-Model4 as an appropriate vaccine candidate among Persian, South Asia, Europe, and North America population. Also, predicted antigenic epitopes of AKPEIRTFSNVLIKY, TRVQDDLRKLQAGVI, and VALFSATMPEEVLEL corresponding to MHC class II were found to provide strong ability to produce IFNγ toward TH(1)-biased-DTH responses. Findings of the current investigation warrant the future experimental assessment of promising SaLeish prophylaxis vaccine that is capable to enhance both innate and specific cellular immune responses.,Copyright © 2020. Published by Elsevier B.V.